Using Bittorrent and SVC for Efficient Video Sharing and Streaming

Abdelhalim Amer¹ Toufik Ahmed² Hidouci Walid-Khaled³ Satoshi Matsuoka¹

¹Tokyo Institute of Technology

²CNRS LaBRI Lab. UMR 5800-University of Bordeaux-1, Talence, France

³Ecole nationale Suprieure d'Informatique, Algiers, Algeria

IEEE Symposium on Computers and Communications, Turkey 2012 (ISCC'2012)

Outline

Internet video

Consumed Internet traffic in 2009	33.2%
Predicted ratio for the end of 2010	40%
Long term prediction: 2009-2014	7x increase
Youtube in 2007 (watched Internet videos)	60%
Youtube in 2007 (HTTP traffic/ Internet traffic)	20% / 10%

Internet video statistics [1][2][3]

- Internet video (Vod, video-to-TV, etc) dominates the Internet traffic
- Significant portion of the Internet traffic = user generated video content (e.g. Youtube)
- ⇒Develop efficient means to transport video over the Internet and help users to share them

- Adaptable video coding: Scalable Video Coding (SVC). Multiple

Internet video streaming challenges

- Adaptable video coding: Scalable Video Coding (SVC). Multiple

Internet not suitable to transport video

Video needs sustained network connection and may require large network bandwidth

Internet video streaming challenges

- Adaptable video coding: Scalable Video Coding (SVC). Multiple

Internet not suitable to transport video

Video needs sustained network connection and may require large network bandwidth

Internet video streaming challenges

Solutions

- Distributed system: Content Delivery Networks (CDNs), Peer-to-Peer (P2P), and Cloud based streaming
- Adaptable video coding: Scalable Video Coding (SVC), Multiple Description Coding (MDC), and Network Coding (NC)
- ⇒ Extend the Bittorrent protocol to support SVC video streaming

Outline

ISCC 2012

Scalable Video Coding [4]

Definition

Encoding a single video stream that embeds multiple qualities

How?

- Single video stream = Multiple layers = Base layer + enhancement layers
- Extension of single-layer H.264/AVC standard ⇒ High compression rate

Single-laver simulcast

Multi-laver multicast

Types of Scalability

Temporal scalability

Spatial scalability

SVC structure and streaming buffer

SVC stream structure

- $ightharpoonup \{D_{max}, Q_{max}, T_{max}\}$ maximum spatial, quality and temporal level resp.
- ▶ Stream = $\{AU_i, i = 1..FrameMax\}$ is a set of Frames of Access Units (AUs)
- \blacktriangleright AU = {NAL_i, i = 1..D_{max} × Q_{max}} is a set Network Abstraction Layer (NAL) units
- ▶ Stream = {Layer_i, $i = 1..D_{max} \times Q_{max} \times T_{max}$ } is a set of Layers

8/1

SVC structure and streaming buffer

SVC stream structure

- $ightharpoonup \{D_{max}, Q_{max}, T_{max}\}$ maximum spatial, quality and temporal level resp.
- ▶ Stream = $\{AU_i, i = 1..FrameMax\}$ is a set of Frames of Access Units (AUs)
- \blacktriangleright AU = {NAL_i, i = 1..D_{max} × Q_{max}} is a set Network Abstraction Layer (NAL) units
- ▶ Stream = {Layer_i, $i = 1..D_{max} \times Q_{max} \times T_{max}$ } is a set of Layers

A sliding window's buffer snapshot: 2 spatial, 2 quality, 3 temporal levels \Rightarrow 12 layers

Outline

Bittorrent protocol [7]

P2P file-sharing protocol

- Entities
 - Tracker: central unit for peer discovery (random)
 - Seed: peer possessing the complete file
 - Leecher: peer downloading the file
- Important algorithms:
 - Piece selection
 - File cut uniformly into pieces
 - Request strategies: random, rarest first
 - Piece download flow:

```
(recv, REQUEST, send) \Rightarrow (send, PIECE, recv) \Rightarrow (recv, HAVE, All)
```

- Peer selection (choking/unchoking)
 - ► Tit-for-tat policy ⇒ reciprocation
 - Based on download and upload rates
- Simulation of the protocol: Omnet++ [5], NS-2 [6]

Outline

SVC in Bittorrent

Observation

In addition to stream adaptation, multi-layer SVC increases the global availability of the content ⇒ Better P2P efficiency

SVC in Bittorrent

Observation

In addition to stream adaptation, multi-layer SVC increases the global availability of the content ⇒ Better P2P efficiency

Proposition: Change Bittorrent's piece selection algorithm

- Follow SVC structure: Basic request piece is a NAL unit (variable size)
 - Better adaptability of the stream. Can use RTP packetization [8]
 - Large overhead $!! \Rightarrow Multi-NAL$ unit requests [9]
- Fixed size sliding window [10]

Outline

Test environment

General configuration

Simulator	NS-2
Network topology	Star
Access Delay	Uniform[1,50] ms
Arrival	Flash crowd: uniform in choking interval
Departure	$\exp \lambda = 1$

Video Encoding characteristics

Video sequence	Elephant dreams	
Frame rate	24 frame/s	
Spatial resolutions	QCIF (176x144) and CIF (352x288)	
SNR Qualities	Q0 and Q1	

Peers characteristics and their distribution[11]

Total Upload BW (kbit/s)	256	320	384	448	512	640	768	1024	1500	3000
Contribute Up-BW(kbit/s)	150	250	300	350	400	500	600	800	1000	1000
Download BW (kbit/s)	512	640	768	1024	1300	2048	2048	3000	5000	9000
Distribution (%)	10.0	14.3	8.6	12.5	2.2	1.4	6.6	28.1	1.4	14.9

Seed and quality distribution

	-	-		
Down-bandwidth range (Kbps)	<= 1024] 1024 , 2048]] 2048 , 5000]	> 4000
Seed up-bandwidth (Kbps)	500	1000	1500	2000
Desired quality	QCIFxQ0	QCIFxQ1	CIFxQ0	CIFxQ1

Initial results: Comparison of SVC and AVC

Distribution of 40 peers according to the amount of non-received data

Observation

Single-layer AVC offers a better QoS because there is a high reciprocation between the peers \Rightarrow Group the peers with close qualities for high reciprocation and use the other peers to increase the download rate

Hierarchical overlay network organization

Hierarchical organization of the overlay network

Hierarchical overlay network organization

Hierarchical organization of the overlay network

How to reorganize the overlay in Bittorrent?

Changing the Bittorrent tracker and peer selection algorithms

- ▶ Tracker returns a more suitable peer list instead of a random one
- The client gives priority to closer quality peers when unchoking (without losing reciprocation)

16/1

New overlay organization results

Distribution of 40 peers according to the amount of non-received data

Observation

New overlay organization for multi-layer SVC achieved higher quality and outperforms single-layer AVC

Scalability analysis

Cumulative distribution of non-received NAL units while increasing the number of peers

Observation

Efficiency drops while increasing the number of peers in the system

What influences scalability?

Detailed results of SVC with 4 qualities and 100 peers scenario

Observations

- Quality increases with content availability (P2P property)
- Flash crowd scenario ⇒ Quality drops when the ratio seed/total peers is too small

Effect of the number of connections per peer

Distribution of 60 peers according to the amount of non-received data

Why this drop in performance?

Mostly due to **HAVE messages**, sent every received NAL unit to all peers ⇒ creating too much traffic

Conclusion

Summary

- We proposed a solution to the problem of video streaming over Internet.
- SVC provides means for stream adaptation and increases the global utility of the content
- Overlay reorganization was necessary to achieve a high Quality of Service (QoS) for the clients

Future work

- Use a more realistic topology (Georgia Tech Internet Topology) Model [12])
- Comparison to other distributed and adaptive video streaming solutions
- This work can be extended with Multiple Description Coding or **Network Coding**

Q&A?

Thank you for your attention

References I

- N. Leavitt, "Network-usage changes push internet traffic to the edge." Computer, vol. 43, pp. 13 - 15, oct. 2010.
- "Ellacoya data shows web traffic overtakes peer-to-peer (p2p) as largest percentage of bandwidth on the network."
- P. Gill, M. Arlitt, Z. Li, and A. Mahanti, "Youtube traffic characterization: a view from the edge," in Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, IMC '07, pp. 15-28, ACM, 2007.
- H. Schwarz, D. Marpe, and T. Wiegand, "Overview of the scalable video coding extension of the h.264/avc standard," IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103-1120, 2007.

References II

- "Omnet++."
- "ns-2 network simulator."
- "Bittorrent protocol specification."
- "Rtp payload format for scalable video coding."
 - S. Medjiah, T. Ahmed, E. Mykoniati, and D. Griffin, "Scalable video streaming over p2p networks: A matter of harmony?," in Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2011 IEEE 16th International Workshop on, pp. 127 – 132, june 2011.

References III

- C. Stais, G. Xylomenos, and A. Archodovassilis, "A comparison of streaming extensions to bittorrent," in Computers and Communications (ISCC), 2011 IEEE Symposium on, pp. 1068 –1073, 28 2011-july 1 2011.
- M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu, "Characterizing residential broadband networks," in Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, IMC '07. (New York, NY, USA), pp. 43-56, ACM, 2007.
- "Georgia tech internet topology model (gt-itm)."